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1. Introduction

Two major challenges for computational 
uid dynamics are problems that involve wave
propagation over long times and problems with a wide range of amplitude scales. An
example with both of these characteristics is the propagation and generation of acoustic
waves, where the mean-
ow amplitude scales are typically orders-of-magnitude larger than
those of the generated acoustics. Other examples include vortex evolution and the direct
simulation of turbulence. All of these problems require greater than second-order accuracy,
whereas for nonlinear equations, most current methods are at best second-order accurate.
Of the higher-order (greater than second-order) methods that do exist, most are tailored to
high-spatial resolution, coupled with time integrators that are only second or third-order
accurate. But for wave phenomena, time accuracy is as important as spatial accuracy.

One property of successful second-order methods is that they attempt to be faithful
to the physics of hyperbolic problems. To develop higher-order methods, particularly for
unsteady problems, it is tempting to violate this philosophy. Typically, higher accuracy
is obtained by increasing the size of the update stencil. Instead, our aim is to develop
time-accurate methods that minimize the size of the update stencil.

The approach in this study is strongly motivated by the physics of hyperbolic conser-
vation laws. Speci�cally, we insist that a numerical method's discrete zone of dependence
should only be slightly larger (for stability) than the physical zone of dependence. Con-
sider a two-time-level method with a Courant number less than 1. In one dimension, only
three cells should contribute to a cell's update; the cell itself and its immediate neighbors.
We will refer to such methods as compact.

Compact methods have the following potential bene�ts:

� The methods are explicit.
� Parallel implementations using domain decomposition only need a single bu�er cell

at domain boundaries, which is updated only once per time step.
� Boundary procedures are straightforward.
� The e�ects of discontinuities are localized.

Additional bene�ts will also be realized, but to discuss them will �rst require some analysis.
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Nearly all of the popular higher-order methods are not compact. In particular, ENO-
based methods, and methods based on multi-stage time integration, are not compact. For
a higher-order method to be compact, either more time levels must be included in the
update, or more data must be carried in each cell. The choice in this study is to carry
more data in each cell, with a two-time-level approach.

Methods that carry more data in each cell, than simply a cell-average or point-value, are
not a new idea. In fact, the approach outlined here is a generalization of Van Leer's Scheme
III (van Leer, 1977), which carries the solution average and �rst moment (or derivative)
in each cell. Scheme III is third-order accurate in space and time.1 This scheme can also
be derived in a �nite-element context (Johnson and Pitkaranta, 1986), and is referred to
as the Discontinuous Galerkin (DG) method. It is the possibility of deriving schemes with
improved order-of-accuracy that makes this approach potentially superior to using the
extra storage for mesh re�nement.

For a bibliography of other work using DG, see (Lowrie, 1996). A notable multi-stage
implementation is given by (Atkins and Shu, 1996), where e�ciency is gained by eliminat-
ing the need for quadrature. The multi-stage DG method may be ideal for steady-state
problems; however, no multi-stage scheme can be compact. Nevertheless, since each stage

of the method is compact, it has many of the advantages of compact schemes that are
outlined above.

The DG method in this study follows the `space-time' approach. Control volumes
(elements) are de�ned in space and time, and then a polynomial representation (which
includes the time variable) of the solution is found in each element. The elements are
arranged so that when solving a linear equation, each element can be solved for explicitly
in a marching procedure. For nonlinear equations, the method is point-implicit, in that
the solution in each element requires the solution of a small system of equations, and only
a small number of elements may be coupled. Moreover, the implicitness is weak, arising
solely from the nonlinearity, so that rapid iteration is possible.

The approach taken in this study is by no means simple, and at this time the compu-
tational cost is high.2 However, the method has a strong theoretical foundation and many
of its properties are highly desirable. Future work should make the present method, or
related methods, practical for a broader range of problems.

2. Conservation Laws

Consider a conservation law of m-equations in d-space dimensions, written as

@tu+r�f(u) = 0; (1)

where u is the vector of conservation variables, r � (@x1 ; : : :; @xd), and f � (f1; : : :; fd).
Another form that will be used in this study is

~r�~f = 0; (2)

where ~r � (r; @t) and ~f � (f ;u). The notation is that v is a vector in space, while ~v is a
space-time vector.

1In a norm that measures the error in the least-damped mode of the solution.
2Note that the \quadrature-free" idea of (Atkins and Shu, 1996) has not yet been implemented, which

may increase performance substantially.
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De�ne the matrix

A` � `�A; (3)

with ` a unit vector, and each component ofA is them�m Jacobian matrix corresponding
to f . We assume (1) is hyperbolic; that is, for every `, A` has real eigenvalues, �`;k,
k = 1; 2; : : :;m, and distinct eigenvectors. The Euler equations of gas dynamics are an
example of a hyperbolic system.

3. Discontinuous Galerkin

3.1. FORMULATION

Let the solution domain 
 be divided into a set of Ne non-overlapping control volumes
(elements), f
eg. Each 
e is allowed to be any type of polygon, with boundary @
e. A
sample space-time mesh for d = 1, between two time levels, is shown in Figure 1.

t
n+1

tn


e

@
e ~ne

t

x

Figure 1. Sample Space-Time Mesh and Element De�nition.

The solution in each element is written in terms of the parameter vector, w(u) (Roe,
1981). For many conservation laws, the quantities u and fi can be written as quadratic
functions of the components of w. This property is used to allow exact evaluation of the

ux integrals.

The numerical solution sought will be continuous within each 
e, but possibly discon-
tinuous across element boundaries. The solution within each element-e will be referred to
as we(~x), 8~x 2 
e, and on the element boundary by wb(~x), 8~x 2 @
e. Note that in general

we(~x) 6= wb(~x); 8~x 2 @
e:

Indeed, the boundary value may be equal to one of the two neighboring element values,
or some combination thereof. The precise de�nition of the boundary value will be given
in the next section.
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In weak form, (2) may be written for each element as

I
@
e

�~fb �~ne dS �

Z

e

~fe �~r� dV = 0; (4)

where ~ne is the outward boundary unit normal, and � = �(~x) is a suitable test function,
to be de�ned later. Note that Equation (4) can be related to the �nite-volume approach
by taking �(~x) = 1.

3.2. FACE DEFINITIONS

In this section, the element-boundary values, (�)b, are de�ned. Let @!e be an element face
that separates two elements 
e and 
e�. Borrowing from the �nite-volume approach, the
interface value is written as a function of the values in the adjacent elements;

wb(~x) = F(we(~x);we�(~x)); 8~x 2 @!e:

The function F will depend on the face \type." Our present code permits two types of

x

t

�max

�min


e�


e

(a) Explicit.


e� 
e

�max�min

(b) Riemann.

Figure 2. Face De�nitions for d = 1. �min and �max correspond to the local minimum and maximum
eigenvalues, respectively.

faces (refer also to Figure 2):

1. Riemann Face: A face that is aligned with the t-axis (ne;t = 0). On such faces, a
(approximate) Riemann solver is used.

2. Explicit Face: The face orientation is such that all of the characteristic paths cross
the face in the same direction; that is, the quantity

� = (`; �`;k) � ~ne;
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is either strictly positive (also referred to as an \Out
ow Face"), or strictly negative
(\In
ow Face"), for all k and `, and all ~x 2 @!e: The vector (`; �`;k) is de�ned via
(3). In practice, the calculation of �`;k for all ` and ~x 2 @!e is not needed, as long
as a reasonable local value is used, along with a safety factor. The boundary value is
then set as

wb(~x) =

�
we�(~x) if � < 0 : \In
ow"
we(~x) if � > 0 : \Out
ow"

(5)

for all ~x 2 @!e: Note that � � 0 is only permissible for Riemann Faces.

The above de�nitions are what give the scheme an \upwind" character. In fact, an Explicit
Face can be thought of as a Riemann Face on which the Riemann solution is known a

priori. Also, in a region where all of the eigenvalues have the same sign, a Riemann Face
satis�es the de�nition of an Explicit Face.

4. Implementation

4.1. SPACE-TIME MESHES

This section de�nes the space-time meshes on which the discrete form of the conservation
law will be solved. How the mesh is de�ned will greatly in
uence the cost of the DG
method. The underlying principle will be to form each space-time mesh in such a way that
the numerical method is at worst point implicit.

4.1.1. 1-D Meshes

In 1-D, two space-time meshes are used. The Riemann Mesh, shown in Figure 3a, contains
Riemann Faces which couple pairs of elements implicitly. To avoid Riemann Faces alto-
gether, the Staggered Mesh in Figure 3b will also be used. For both meshes, the diagonal
Explicit Faces satisfy Equation (5) as long as the Courant number is less than 1. This
condition is in fact the stability constraint.

1

3

2 2

(a) Riemann.

tn+1

tn

4

12

3

(b) Staggered.

Figure 3. Various Space-Time Mesh Segments. Solid lines denote Explicit Faces, with arrows indicating
the 
ow of information. Dashed lines are Riemann Faces. The element types are numbered according to
the order in which they are solved.

Figure 3 also indicates the order in which the elements are solved. The solution proce-
dure for the Riemann Mesh is as follows:
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1. Solve in each of the elements of family 1 . The 
ux on the bottom face is either from

the initial condition, or the solution in element 3 from the previous time level.

2. Solve in the elements of family 2 . In general, these elements are coupled in pairs
by the Riemann Faces. The two elements are not coupled implicitly if all of the
eigenvalues are of the same sign.

3. Solve in each of the elements of family 3 .
4. Proceed to the next time level.

The Staggered Mesh is solved in a similar fashion, the only di�erence being that no ele-
ments are coupled implicitly. For the Euler equations, the computational cost of using the
Riemann Mesh is approximately 70% more than the Staggered Mesh.

A mesh can also be de�ned that is made up of segments of the Riemann and Staggered
Meshes. In particular, to enforce boundary conditions (other than periodic) the Staggered
Mesh uses a Riemann Mesh segment at the boundary.

4.1.2. 2-D Meshes

The 2-D space-time mesh is an extension of the 1-D Staggered Mesh of Figure 3b. The
underlying 2-D spatial mesh is a quadrilateral mesh. To visualize the space-time mesh,
Figure 4 shows the order in which elements are solved, over 1

2�t. In the next half-time

step, the mesh is staggered; the Step (1) pyramid base, in the 1
2�t < t � �t interval, is

coincident with the Step (3) pyramid base of the 0 < t � 1
2�t interval. Note that at each

step, none of the element solutions are coupled, just as in 1-D Staggered Mesh. For Step
(2), the same �nal solution results if the y-axis \valley" elements are solved before the
x-axis \valley" elements. The method does not use \operator splitting." As a consequence,
the results show that this mesh does not exhibit a loss of accuracy when the advection
direction is skewed with respect to the spatial mesh.

A 2-D analogy to the 1-D Riemann Mesh also exists, along with meshes based on a
2-D triangular spatial mesh and a 3-D hexahedral mesh; see (Lowrie, 1996). Only the
Staggered Mesh has been used for 2-D problems, with Riemann Faces used on the domain
boundaries to enforce boundary conditions.

4.2. ALGEBRAIC SYSTEM

To solve Equation (4) numerically, in each element the solution is approximated as

we(~x) =
NX
j=1

�e;j(~x)ce;j; 8~x 2 
e;

where the f�e;jg, j = 1; 2; : : :; N are polynomial basis functions over the element 
e.
DG(k) will refer to the DG method with each �e;j 2 Pk(
e), where Pk(
e) is the space of
polynomials of maximum order k de�ned on 
e. The variable w = w(u) is the parameter
vector. There are N -unknown m-vectors in each element, namely the expansion coe�cient
vectors, ce;j.

To generate the necessary N vector equations, the Galerkin approach is to choose
� = �e;i; i = 1; 2; : : :; N; in Equation (4). This choice results in the minimization property
described in (Lowrie, 1996). For a nonlinear conservation law, the resulting system of
equations is nonlinear in the ce;j . To solve this system, a Newton-Kantorovich approach
is taken.
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x

y

t

Step (1): Solve in the pyramid
elements covering each x; y mesh

cell.

Step (2): Solve in the tetrahedral
elements that �ll the x-axis valleys
of the pyramid elements in Step [1].

Step (2)-continued: Solve in the
tetrahedral elements that �ll the
y-axis valleys of the pyramid

elements in Step [1].

Step (3): Solve in the
inverted-pyramid elements.

Figure 4. Element Solution Order for the 2-D Staggered Mesh. Only 1

2
�t of mesh is shown.

Consider the general case where the solution of Nc elements are coupled. Linearizing
(4) gives a system of equations of the form

M(�c) = �r; (6)

where �c is the update vector to the expansion coe�cients, and M is a Nc � Nc block
matrix. Each submatrix block is an (mN)� (mN) matrix. From the boundary de�nitions,
the coupling of elements can only occur across Riemann Faces. Therefore, the maximum
Nc = 2 for the 1-D Riemann Mesh, and Nc = 1 for the Staggered Meshes.

The integrals are computed numerically using Gaussian quadrature. Note that if Equa-
tion (1) is a linear system, then M is a constant matrix, which can be inverted once and
stored for each class of coupled elements. For nonlinear systems, the cost can be reduced
without a signi�cant decrease in accuracy by performing only a single iteration of (6), and
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by computing M using the DG(0) solution (which can often be found explicitly). This
eliminates the need for quadrature when computing M.

Boundary conditions are applied by de�ning a \ghost" Gauss point at each physical
Gauss point that is on the boundary. A Riemann problem is then solved to determine
the boundary 
ux. The boundary procedure is the same for any order-of-accuracy, unlike
methods that require special di�erence stencils.

5. Accuracy

The DG method has the following properties:

1. Conservation.
2. Stability, and satis�es an entropy condition, for Courant numbers less than 1 and any

order-of-accuracy.
3. A minimization property.
4. High accuracy.

Each of these properties are discussed in (Lowrie, 1996). A brief overview of the accuracy
will be given in this section.

For a method using an order-k interpolant, the expectation is that at best the error
will converge as O(hk+1), where h is some measure of the mesh size. However, a Fourier
analysis shows that DG(k) converges as O(h2k+1) in a certain norm, indicating that DG(k)
has a superconvergence property. This norm, denoted by Lev

p , measures only the error in
the evolution of the initial condition projected onto the accurate mode of the update
operator.3 The Lev

p -norm will be related to more standard norms in the remainder of this
section.

For a calculation to any �xed time t > 0, in the limit h! 0, all of the spurious modes
will be damped out. Therefore, any other norm will include a term proportional to the
evolution error, plus the particular norm's measure of the initial condition projected onto
the accurate mode (a one-time contribution).

A norm typically used to measure the solution accuracy at a given time-level is

Lp(v) =

�
1

j
dj

Z

d

jv(x)� vexact(x)j
p dx

�1=p
;

where 
d is the spatial domain, and v; vexact are the numerical and exact solutions of a
representative variable of the conservation law. A �nite-element analysis shows that DG(k)
converges in L2 as O(h

k+1=2) (Ja�re et al., 1995). However, for many smooth solutions on
`regular' meshes, practitioners often realize O(hk+1) accuracy (Ja�re et al., 1995; Richter,
1988). By including the initial-projection error, the Fourier analysis gives a convergence
rate of O(hk+1) in Lp.

Another norm studied here is the error in the cell averages, denoted by �Lp(v). The
Fourier analysis for this norm gives O(hk+2) for k > 0, and O(h) for k = 0. Although
Lp and �Lp have slower convergence than Lev

p , the consequences of the superconvergence
property will be apparent in the results of Section 6.1.

Note that the semi-discrete version of DG, with (k+1)-multi-stage, isO(hk+1) accurate
(Cockburn and Shu, 1989), and therefore does not have the superconvergence property.

3The accurate mode is the least-damped mode. There are k-spurious modes.
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However, (Atkins and Shu, 1996) later observed O(h3) convergence in the cell-averages
for k = 1, using a 3-stage time integration. Since the 3-stage method is a third-order time
integrator, obviously there is some mode that is advected with third-order accuracy. What
Atkins and Shu have apparently shown is that the projection of the initial condition onto
this mode is also third-order.

6. Results

6.1. SCALAR ADVECTION

Results are now presented for the linear equation

@tu+ @xu = 0;

on 0 � x � 1, with the initial condition u(x; 0) = sin(2�x), and periodic boundary
conditions. Figure 5 shows the order-of-accuracy history for the Staggered Mesh, � = 0:8,
using the L1 and �L1-norms. Similar results are obtained for the Riemann Mesh. At least for
early times, DG(k) follows the Fourier analysis' prediction of O(hk+1) in Lp. An interesting
phenomenon can occur, however, as shown by the results for DG(1). Given enough time,
the evolution error will accumulate, and overcome the initial-projection error, denoted
as L0

1. Past this time, for a given stage in mesh re�nement, the accuracy convergence is
dictated by the evolution error, Lev

1 , which converges as O(h2k+1).

0 10 20 30 40 50
1

2

3

4

t

O
rd
er

L1

�L1

(a) DG(1), Mesh 40! 80.

0 40 80 120 160 200
1

2

3

4

5

6

7

8

t

L1

�L1

(b) DG(3), Mesh 10! 20.

Figure 5. Order-of-Accuracy History, Sine Wave, Staggered Mesh, � = 0:8, using L1 and �L1-norms. The
two mesh sizes used for the order calculation are indicated.

Such behavior is also evident in the �L1-norm for k = 3. Since the initial error �L0
1 � L0

1,
the order asymptotes to apparent O(h2k+1)-accuracy much more quickly in �L1 than L1.
The oscillations in the order are the result of the spurious modes. Note that the time at
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which the evolution error overcomes the initial-projection error increases with mesh size,
and therefore strictly speaking the convergence in �L1 is O(h

k+2). However, the �nest mesh
used in each case here gives results that are well-resolved. At the �nal time shown in each
plot, DG(1) has an error given by log10(�L1) = �3:56, while DG(3)'s error is -7.51. For
many practical problems where long-time integration is required, there is the possibility
of realizing O(h2k+1)-accuracy, particularly in �Lp.

For smooth solutions, nonlinearity does not seem to destroy the superconvergence
property, but the time-histories are more complicated. See (Lowrie, 1996) for results when
solving the Euler equations.

6.2. SHU-OSHER PROBLEM

The problem of (Shu and Osher, 1989) corresponds to a Mach 3 shock propagating into
a sinusoidal density wave. This problem requires a limiter; see (Lowrie, 1996) for speci�cs
on the limiter used. Figure 6 shows the DG(1) cell-average densities, using 400 cells on the
Staggered Mesh. The \exact" solution here is the 1600-cell solution. For this problem, the
Riemann Mesh solution is very similar. Also, the 800-cell solution is nearly indistinguish-
able from the exact solution. The results here compare favorably with the TVD results of
(Huynh, 1995; Cockburn et al., 1989).

0:0 0:2 0:4 0:6 0:8 1:0
0:8

1:6

2:4

3:2

4:0

4:8

x

�

Exact

Cell Avg.

Figure 6. Shu-Osher Problem, DG(1), Staggered Mesh, � = 0:8, 400 cells, t = 0:18.

6.3. PRESSURE PULSE IN FREESTREAM OVER WALL

This problem has an initial condition of a Gaussian-pressure pulse above a plane wall,
immersed in a steady 
ow. This is the \Category IV" problem described in the (NAS,
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1994) workshop proceedings. The Workshop participants used a 200�200 mesh for this
problem. Figure 7 shows a solution of the full Euler equations using DG(3) on a 25�25
mesh.4 On such a coarse mesh, the initial Gaussian is spread over approximately three

(a) t = 0, with mesh (b) t = 60

(c) t = 75 (d) t = 100

Figure 7. Gaussian-Pressure Pulse over Wall. DG(3) results, 25�25 mesh, � = 0:8. On the t = 60 plot,
the dashed line indicates a cut along which comparisons will be made.

4In 2-D, DG(3) uses
p
10 more degrees-of-freedom per mesh direction than a conventional di�erence

method. By this measure, DG(3) on a 25�25 mesh is equivalent to a conventional method on a 79�79
mesh.
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�100 �60 �20 20 60 100
�2

�1

0

1

2

3

x

(p
�

p
1

)=
p
1

�

1
0
3

Linear Theory

DG(3)

(a) Wall Pressure (y = 0).

0 40 80 120 160 200y

Linear Theory

DG(3)

(b) Vertical Cut (x = 30).

Figure 8. Gaussian-Pressure Pulse over Wall, Comparison of DG(3) with Linear Theory, Mesh 25 � 25.
See Figure 7b for location of vertical cut.

cells. The method does a reasonable job of maintaining symmetry, but wave re
ections at
the downstream boundary are noticeable at t = 100. These re
ections are a result of the
characteristic-normal boundary condition, and do not disappear with mesh re�nement.
A more sophisticated far�eld boundary condition is needed to suppress the re
ections of
oblique waves.

Since the waves in this problem are weak, a full Euler solution should compare well
with linear theory. Figure 8 compares the pressures at t = 60 along the wall, and through
a vertical cut at x = 30. The agreement is good, except at the peaks, where DG(3) under-
predicts the pressure. Note that the glitches in the predicted wall pressure, most apparent
in the region �20 � x � 0, show the mismatch at the cell boundaries of the discontinuous
interpolant. On a 50�50 mesh, DG(3) and linear theory are indistinguishable (Lowrie,
1996).

6.4. PRESSURE PULSE AND VORTEX INTERACTION

This problem is the interaction of a pressure pulse and a vortex, immersed in a steady

ow. The \Category III" problem in (NAS, 1994) is very similar to the problem in this
section. The solution domain is �100 � x; y � 100, with far�eld conditions speci�ed at
all four boundaries. The initial conditions are

p = 1 + 0:01
Ep(x; y);

� = 
 + 0:01
 [Ep(x; y) + 0:1Ev(x; y)] ;

u = 0:5 cos(�) + 0:0004(y � yv);

v = 0:5 sin(�) � 0:0004(x � xv);
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(a) t = 0, with mesh (b) t = 30

(c) t = 75 (d) t = 100

Figure 9. Pressure-Pulse / Vortex Interaction, � = arctan(3=4). DG(3) Density Contours, 40�40 Mesh,
� = 0:8.

where � is the freestream-
ow angle, and

Ep(x; y) = exp

"
� ln(2)

(x � xp)
2 + (y � yp)

2

9

#
;

Ev(x; y) = exp

"
� ln(2)

(x � xv)
2 + (y � yv)

2

25

#
;

(xp; yp) = �50(cos(�); sin(�));

(xv; yv) = 25(cos(�); sin(�)):
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�100 �60 �20 20 60 100
�1:0

�0:5

0:0

0:5

1:0

1:5

2:0

x

(�
�

�
1

)=
�
1

�

1
0
3

Linear Theory

DG(3)

(a) � = 0

�100 �60 �20 20 60 100s

Linear Theory

DG(3)

(b) � = arctan(3=4)

Figure 10. Pressure-Pulse / Vortex Interaction, Comparison with Linear Theory, 40�40 Mesh, � = 0:8.
Cut is along line connecting pressure pulse and vortex.

Here (xp; yp) and (xv; yv) represent the initial centers of the pressure pulse and vortex,
respectively. The above initial conditions di�er from those in (NAS, 1994) in that the
distance between the pressure pulse and vortex is independent of �.

DG(3) density contours are shown in Figure 9 for � = arctan(3=4). Comparing the
density contours at t = 30 and t = 100, the vortex is not distorted by the acoustic wave,
as predicted by linear theory. A comparison with linear theory is made for both � = 0
and � = arctan(3=4) in Figure 10. Both solutions compare reasonably well, with those for
� = arctan(3=4) slightly worse. The density glitch at x = �12:5 corresponds to the center
of the pressure pulse, and is present in the DG(k) results because the initial condition is
not isentropic. Results for DG(3) on a 60�60 mesh are within 2% of linear theory (Lowrie,
1996).

7. Summary

A time-accurate method has been developed that is based on the Discontinuous Galerkin
method. In deriving the method, the idea of compactness has been strictly followed. That
is, that the discrete domain of dependence should contain a minimum amount of data
outside of the physical domain of dependence. For any order-of-accuracy, the method is
stable for Courant numbers less than 1, satis�es an entropy condition, and a minimization
property.

We've given an argument as to why the superconvergence property is important for
problems that require long-time integration. For the long-time integration of linear prob-
lems, the error is driven by a norm that converges as O(h2k+1). Although not shown here,
numerical experiments indicate that this property extends to some nonlinear cases.

The use of the Staggered Mesh allows for the elimination of the Riemann problem. The
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disadvantage of any time-staggered approach is the presence of di�usion at low Courant
numbers. Although seemingly avoidable in 1-D problems, in 2-D di�usion e�ects are un-
avoidable, resulting in `cross-di�usion;' see (Lowrie, 1996) for more discussion.

A comparison of DG(k) with the multi-stage version (Cockburn et al., 1989; Atkins and
Shu, 1996) shows two main advantages in keeping the method compact. The �rst advantage
is that the Courant restriction for the multi-stage version is inversely proportional to k,
at least for k = 1; 2. Secondly, DG(k) has a superconvergence property, although there is
some evidence that increasing the order of the multi-stage integration may give the same
bene�t, along with a modest increase in stability. In terms of simplicity, the multi-stage
version clearly shows an advantage.

The accuracy of DG(k) is impressive. The typical arguments against moving beyond
second-order accuracy are that higher-order methods are less robust, as a result of stabil-
ity restrictions, limiting, and boundary procedures. Although much work is still needed
in developing a limiter, the method described here shows that by strictly following the
physics, many desirable properties can be obtained including any order-of-accuracy. The
DG(k) method actually improves with increasing k, in terms of the cost for a speci�ed
error tolerance. This work should open the door to the development of more practical
methods that are ideal for problems that demand high accuracy.
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